Derived Traces of Soergel Categories

نویسندگان

چکیده

Abstract We study two kinds of categorical traces (monoidal) dg categories, with particular interest in categories Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, category bimodules arbitrary types. Secondly, introduce notion horizontal trace a monoidal and type $A$. As an application obtain annular Khovanov–Rozansky link invariant action full twist insertion, thus categorification HOMFLY-PT skein module solid torus.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagrammatics for Soergel Categories

The monoidal category of Soergel bimodules can be thought of as a categorification of the Hecke algebra of a finite Weyl group. We present this category, when the Weyl group is the symmetric group, in the language of planar diagrams with local generators and local defining relations. Date: February 27, 2009.

متن کامل

Traces in Monoidal Categories

Abstract. This paper contains the construction, examples and properties of a trace and a trace pairing for certain morphisms in a monoidal category with switching isomorphisms. Our construction of the categorical trace is a common generalization of the trace for endomorphisms of dualizable objects in a balanced monoidal category and the trace of nuclear operators on a topological vector space w...

متن کامل

Traces in braided categories

With any even Hecke symmetry R (that is a Hecke type solution of the Yang-Baxter equation) we associate a quasitensor category. We formulate a condition on R implying that the constructed category is rigid and its commutativity isomorphisms RU,V are natural in the sense of [T]. We show that this condition leads to rescaling the initial Hecke symmetry. We suggest a new way of introducing traces ...

متن کامل

The Additivity of Traces in Triangulated Categories

We explain a fundamental additivity theorem for Euler characteristics and generalized trace maps in triangulated categories. The proof depends on a refined axiomatization of symmetric monoidal categories with a compatible triangulation. The refinement consists of several new axioms relating products and distinguished triangles. The axioms hold in the examples and shed light on generalized homol...

متن کامل

Monoidal Categories, 2-traces, and Cyclic Cohomology

In this paper we show that to a unital associative algebra object (resp. co-unital coassociative co-algebra object) of any abelian monoidal category (C,⊗) endowed with a symmetric 2-trace, i.e. an F ∈ Fun(C,Vec) satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab019